Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ewa Rozycka-Sokolowska, Tomasz Girek, Bernard Marciniak* and Volodymyr Pavlyuk

Institute of Chemistry and Environment Protection, Jan Dlugosz Academy, al. Armii
Krajowej 13/15, 42-200 Czestochowa, Poland

Correspondence e-mail: crystal@cz.onet.pl

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.121$
Data-to-parameter ratio $=17.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

1-(N,N-Diethylamino)-2,3-diphenylcyclopropenylium tetrafluoroborate

The asymmetric unit of the title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}^{+} \cdot \mathrm{BF}_{4}^{-}$, consists of an aminodiphenylcyclopropenylium cation and a tetrafluoroborate anion. The crystal packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.

Comment

Small unsaturated carbon fragments are important in fields ranging from organometallic chemistry (Bruce, 1998) to materials science (Dresselhaus et al., 1996) and astrophysics (Weltner \& Van Zee, 1989). The cyclopropenylium ion is a Hückel aromatic cation and would be a candidate for the cationic component of such unusual hydrocarbons (Kitagawa et al., 2001). Although numerous derivatives of the cyclopropenylium ion have been prepared over the past decades (Komatsu \& Yoshida, 1996), there are very few cyclopropenylium ions that are conjugated with amino groups (Yoshida et al., 1985; Matsumoto et al., 2002, 2003). Recently, we have synthesized and solved the crystal structure of the title compound, (I).

(I)

The asymmetric unit of (I) consists of an aminodiphenylcyclopropenylium cation and a tetrafluoroborate anion (Fig. 1). The F atoms of the anion revealed high displacement parameters. The plane of the cyclopropene ring makes angles of 12.14 (13) and $35.78(14)^{\circ}$, respectively, with the C8-C13 and C14-C19 phenyl rings. The dihedral angle between the two phenyl rings is $45.23(8)^{\circ}$. The N atom of the diethylamine group is displaced by 0.029 (1) \AA from the plane defined by atoms C1-C3. In the crystal structure, each cation is linked to four anions via $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (Table 1).

Experimental

The title compound was prepared in 43% yield by the one-pot reaction of diphenylcyclopropenone with Meerwein reagent followed by diethylamine in dichloromethane at room temperature (Matsumoto et al., 2002, 2003). Single crystals of (I) were obtained by slow cooling of a solution in dichloromethane.

Received 23 November 2005 Accepted 13 December 2005 Online 21 December 2005
\qquad

Figure 1
The constituent ions of (I), showing the atom numbering and with displacement ellipsoids drawn at the 50% probability level.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}^{+} \cdot \mathrm{BF}_{4}{ }^{-}$
$M_{r}=349.17$
Monoclinic, $P 2_{1} / c$
$a=14.216$ (3) \AA
$b=8.004$ (2) \AA
$c=18.501$ (1) \AA
$\beta=121.19(3)^{\circ}$
$V=1800.9$ (8) \AA^{3}
$Z=4$

$$
D_{x}=1.288 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 30 reflections
$\theta=5-15^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Tablet, colourless
$0.50 \times 0.34 \times 0.08 \mathrm{~mm}$

Data collection

Burevestnik DARCH-1 diffractometer
$\mathrm{w} / 2 \theta$ scans
Absorption correction: refined from $\triangle F(D I F A B S$;
Walker \& Stuart, 1983)
$T_{\text {min }}=0.979, T_{\text {max }}=0.997$
4116 measured reflections
4116 independent reflections

Refinement

Refinement on F^{2}
2076 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-18 \rightarrow 15$
$k=0 \rightarrow 10$
$l=0 \rightarrow 23$
3 standard reflections every 100 reflections intensity decay: 2.5%
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.121$
$S=0.81$
4116 reflections
231 parameters

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0553 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.11 \mathrm{e}^{-3} \AA^{-3}$
> $\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{~F}^{\mathrm{i}}$	0.97	2.51	$3.373(2)$	148
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~F} 3$	0.97	2.45	$3.293(2)$	145
$\mathrm{C}^{\mathrm{ii}} 2-\mathrm{H} 12 \cdots \mathrm{~F} 1^{\mathrm{ii}}$	0.93	2.54	$3.443(2)$	165
$\mathrm{C}^{\mathrm{H}} 5-\mathrm{H} 15 \cdots \mathrm{~F}^{\mathrm{iii}}$	0.93	2.52	$3.343(2)$	148

[^1]

Figure 2
The crystal packing of (I).

H atoms were treated in riding mode $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with refined group $U_{\text {iso }}(\mathrm{H})$ values.

Data collection: DARCH Package (Burevestnik, 1991); cell refinement: DARCH Package; data reduction: DARCH Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997); software used to prepare material for publication: SHELXL97.

We are grateful to Dr V. Davydov for the data collection.

References

Bruce, M. I. (1998). Coord. Chem. Rev. 166, 91-119.
Burevestnik (1991). DARCH Package. NPO Burevestnik, St Petersburg, Russia.
Dresselhaus, M. S., Dresselhaus, G. \& Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kitagawa, T., Tanaka, T., Murakita, H., Nishikawa, A. \& Takeuchi, K. (2001). Tetrahedron, 57, 3537-3547.
Komatsu, K. \& Yoshida, Z. (1996). Methods of Organic Chemistry (HoubenWeyl), edited by A. de Meijere, Vol. E17d, pp. 3079-3192. Stuttgart: Thieme.
Matsumoto, K., Girek, T., Okada, A. \& Hayashi, N. (2003). Heterocycles, 59, 477-480.
Matsumoto, K., Okada, A., Girek, T., Ikemi, Y., Kim, J. C., Hayashi, N., Yoshida, H. \& Kakehi, A. (2002). Heterocycl. Commun. 8, 325-328.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Weltner, W. \& Van Zee, R. J. (1989). Chem. Rev. 89, 1713-1747.
Yoshida, H., Yagi, K., Tamai, T., Sano, H., Ogata, T. \& Matsumoto, K. (1985). Bull. Chem. Soc. Jpn, 58, 1073-1074.

[^0]: (C) 2006 International Union of Crystallography

[^1]: Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

